Organoid technologies meet genome engineering.
نویسندگان
چکیده
Three-dimensional (3D) stem cell differentiation cultures recently emerged as a novel model system for investigating human embryonic development and disease progression in vitro, complementing existing animal and two-dimensional (2D) cell culture models. Organoids, the 3D self-organizing structures derived from pluripotent or somatic stem cells, can recapitulate many aspects of structural organization and functionality of their in vivo organ counterparts, thus holding great promise for biomedical research and translational applications. Importantly, faithful recapitulation of disease and development processes relies on the ability to modify the genomic contents in organoid cells. The revolutionary genome engineering technologies, CRISPR/Cas9 in particular, enable investigators to generate various reporter cell lines for prompt validation of specific cell lineages as well as to introduce disease-associated mutations for disease modeling. In this review, we provide historical overviews, and discuss technical considerations, and potential future applications of genome engineering in 3D organoid models.
منابع مشابه
Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering?
Adult tissue stem cells can form self-organizing 3D organoids in vitro. Organoids resemble small units of their organ of origin and have great potential for tissue engineering, as well as models of disease. However, current culture technology limits the size, architecture and complexity of organoids. Here, we review the establishment of intestinal and hepatic organoids and discuss how the conve...
متن کاملAdvancing Intestinal Organoid Technology Toward Regenerative Medicine
With the emergence of technologies to culture intestinal epithelial cells in vitro as various forms of intestinal organoids, there is growing interest in using such cultured intestinal cells as a source for tissue engineering and regenerative medicine. One such approach would be to combine the organoid technology with methodologies to engineer the culture environment, particularly the three-dim...
متن کاملProtein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids.
Though in vitro culture of primary intestinal organoids has gained significant momentum in recent years, little has been done to investigate the impact of microenvironmental cues provided by the encapsulating matrix on the growth and development of these fragile cultures. In this work, the impact of various in vitro culture parameters on primary adult murine organoid formation and growth are an...
متن کاملThree-Dimensional Organoid System Transplantation Technologies in Future Treatment of Central Nervous System Diseases
In recent years, scientists have made great achievements in understanding the development of human brain and elucidating critical elements of stepwise spatiotemporal control strategies in neural stem cell specification lineage, which facilitates successful induction of neural organoid in vitro including the cerebral cortex, cerebellar, neural tube, hippocampus cortex, pituitary, and optic cup. ...
متن کاملDissecting the stem cell niche with organoid models: an engineering-based approach.
For many tissues, single resident stem cells grown in vitro under appropriate three-dimensional conditions can produce outgrowths known as organoids. These tissues recapitulate much of the cell composition and architecture of the in vivo organ from which they derive, including the formation of a stem cell niche. This has facilitated the systematic experimental manipulation and single-cell, high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EMBO reports
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2017